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These examples illustrate: 

1) how annoying cubics can be to solve

2) how useful conjugates and quadratic solutions are 

3)  that polynomials of order N have N roots, which may be real or complex
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What is our mental model for “seeing” complex numbers multiplied?
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Notice these are ratios - no units. The size of the triangle is ultimately irrelevant and is normalized away (by c)
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From here on, we use unit triangles and the unit circle, to reduce nomenclature. Because we are concerned with angles, not size.
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From here on, we use unit triangles and the unit circle, to reduce nomenclature. Because we are concerned with angles, not size.

But, to do work with arbitrary complex (a,b) viewed as angles, first we show:


1. That (a,b) can be part of a right triangle

2. That we can get c and alpha from (a,b) right triangles

3.  That we can normalize triangles to unit length and correct sizes later
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Yup, initial sizes determine final sizes
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Full of math?

We opened by talking about complex numbers

You derived an expression for multiplying complex numbers

You saw if complex numbers are viewed as angled vectors, multiplying is like adding angles

We saw we could normalize vectors to unit length (and unnormalize later)

And we have developed general ways to add angles

And so…
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cos(β − α) = cos(β)cos(α)) + sin(β)sin(α)cos(β + α) = cos(β)cos(α) − sin(β)sin(α)

sin(β + α) = sin(β)cos(α) + cos(β)sin(α) sin(β − α) = sin(β)cos(α) − cos(β)sin(α)

Multiplying vectors is adding angles

With complex vectors in the imaginary plane:

Q0:

We can take (a,b), normalize, 
work in unit vectors,  

and multiply by needed length at the end

MULTIPLYING COMPLEX NUMBERS IS ROTATING
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