Mental exercise: geometry and complex numbers

Solve these equations:

Solve these equations:

$$
x^{2}=1
$$

$$
x^{2}=1
$$

$$
x^{2}=-1
$$

Solve these equations:

$$
x^{2}=1
$$

$$
x^{2}=-1
$$

$$
x^{4}=1
$$

$$
x^{2}=1
$$

$$
x^{2}=-1
$$

$$
x^{4}=1
$$

$$
x^{3}=1
$$

Solve these equations:

$$
\begin{aligned}
x^{2} & =1 \\
x^{2}-1 & =0
\end{aligned}
$$

$$
x^{2}=-1
$$

$$
x^{4}=1
$$

$$
x^{3}=1
$$

Solve these equations:

$$
\begin{array}{r}
x^{2}=1 \\
x^{2}-1=0 \\
(x+1)(x-1)=0
\end{array}
$$

$$
x^{2}=-1
$$

$$
x^{4}=1
$$

$$
x^{3}=1
$$

Solve these equations:

$$
\begin{aligned}
x^{2} & =1 & x^{2}=-1 & x^{4}=1 \\
x^{2}-1 & =0 & & \\
(x+1)(x-1) & =0 & & \\
x & =-1,1 & &
\end{aligned}
$$

Solve these equations:

$$
\begin{array}{rlrl}
x^{2} & =1 & x^{2}=-1 & x^{4}=1 \\
x^{2}-1 & =0 & x= \pm i & \\
(x+1)(x-1) & =0 & & \\
x & =-1,1 & &
\end{array}
$$

Solve these equations:

$$
\begin{array}{rlrl}
x^{2} & =1 & x^{2}=-1 & x^{4}=1 \\
x^{2}-1 & =0 & x= \pm i & x^{4}-1=0 \\
(x+1)(x-1) & =0 & & \\
x & =-1,1 & &
\end{array}
$$

$$
\begin{array}{rlrl}
x^{2} & =1 & x^{2}=-1 & x^{4}=1 \\
x^{2}-1 & =0 & x= \pm i & x^{3}-1=1 \\
(x+1)(x-1) & =0 & & \left(x^{2}-1\right)\left(x^{2}+1\right)=0
\end{array}
$$

$$
\begin{aligned}
x^{2} & =1 & x^{2}=-1 & x^{4}
\end{aligned}=1 \quad x^{3}=1
$$

$$
\begin{array}{rlrl}
x^{2} & =1 & x^{2} & =-1 \\
x^{2}-1 & =0 & x & = \pm i \\
(x+1)(x-1) & =0 & x^{4} & =1 \\
x & =-1,1 & x^{4}-1 & =0 \\
x^{2}=0 & \left(x^{2}-1\right)\left(x^{2}+1\right)=0 \\
& & (x-1)(x+1)\left(x^{2}+1\right)=0
\end{array}
$$

Solve these equations:

$$
\left.\begin{array}{rlrl}
x^{2} & =1 & x^{2} & =-1 \\
x^{2}-1 & =0 & x & = \pm i \\
(x+1)(x-1) & =0 & x^{4} & =1 \\
x & =-1,1 & x^{4}-1 & =0 \\
x & (x-i)(x+i) & =0 & \left(x^{2}-1\right)\left(x^{2}+1\right)
\end{array}\right)
$$

Solve these equations:

$$
\left.\begin{array}{rlrl}
x^{2} & =1 & x^{2} & =-1 \\
x^{2}-1 & =0 & x & = \pm i \\
(x+1)(x-1) & =0 & x^{4} & =1 \\
x & x^{2}+1 & =0 & x^{4}-1
\end{array}\right)=0
$$

Solve these equations:

$$
\begin{array}{rlrl}
x^{2} & =1 & x^{2} & =-1 \\
x^{2}-1=0 & x & = \pm i & x^{4}
\end{array}=1 \quad x^{3}=1
$$

Solve these equations:

$$
\begin{aligned}
x^{2}=1 & x^{2} & =-1 & x^{4}
\end{aligned}=1 \quad x^{3}=1
$$

Solve these equations:

$$
\left.\begin{array}{rlrl}
x^{2} & =1 & x^{2} & =-1 \\
x^{2}-1 & =0 & x & = \pm i \\
(x+1)(x-1) & =0 & x^{2}+1 & =0 \\
x & =-1,1 & (x-i)(x+i)=0 & \left(x^{4}-1\right.
\end{array}\right)=0
$$

Solve these equations:

$$
\left.\begin{array}{rlrl}
x^{2} & =1 & x^{2} & =-1 \\
x^{2}-1 & =0 & x & = \pm i \\
(x+1)(x-1) & =0 & x^{4}+1 & =0 \\
x & =-1,1 & (x-i)(x+i)=0 & \left(x^{4}-1\right.
\end{array}\right)=0
$$

Solve these equations:

$$
\left.\begin{array}{rlrl}
x^{2}=1 & x^{2} & =-1 & x^{4} \\
=1 & x^{3}=1 \\
x^{2}-1=0 & x & = \pm i & x^{4}-1
\end{array}\right)
$$

Solve these equations:

$$
\left.\begin{array}{rlrl}
x^{2} & =1 & x^{2} & =-1 \\
x^{2}-1 & =0 & x & = \pm i \\
(x+1)(x-1) & =0 & x^{4}+1 & =0 \\
x & =-1,1 & (x-i)(x+i)=0 & (x-1)(x+1)\left(x^{2}+1\right)
\end{array}\right)=0 \begin{aligned}
& x^{4}-1 \\
& \\
&
\end{aligned}
$$

Solve these equations:

$$
\begin{array}{rrrr}
x^{2}=1 & x^{2}=-1 & x^{4}=1 & x^{3}=1 \\
x^{2}-1=0 & x= \pm i & x^{4}-1=0 & x^{3}-1=0 \\
(x+1)(x-1)=0 & x^{2}+1=0 & \left(x^{2}-1\right)\left(x^{2}+1\right)=0 & (x-1)\left(x^{2}+x+1\right)=0 \\
x=-1,1 & (x-i)(x+i)=0 & (x-1)(x+1)\left(x^{2}+1\right)=0 & \left(x^{2}+x+1\right)=0 \\
& (x-1)(x+1)(x-i)(x+i)=0 & \text { Use quadratic formula } \\
& x= \pm 1, \pm i & x=-\frac{1}{2} \pm \frac{\sqrt{1-4}}{2}
\end{array}
$$

Solve these equations:

$$
\begin{array}{crr}
x^{2}=1 & x^{2}=-1 & x^{4}=1 \\
x^{2}-1=0 & x= \pm i & x^{4}-1=0 \\
(x+1)(x-1)=0 & x^{2}+1=0 & \left(x^{2}-1\right)\left(x^{2}+1\right)=0 \\
x=-1,1 & (x-i)(x+i)=0 & (x-1)(x+1)\left(x^{2}+1\right)=0 \\
& (x-1)(x+1)(x-i)(x+i)=0 & x^{3}-1=0 \\
& x= \pm 1, \pm i & \left(x^{2}+x+1\right)=0 \\
& & x=-\frac{1}{2} \pm \frac{\sqrt{1-4}}{2} \\
& & x=-\frac{1}{2} \pm \frac{\sqrt{-3}}{2}
\end{array}
$$

Solve these equations:

$$
\begin{array}{rrrr}
x^{2}=1 & x^{2}=-1 & x^{4}=1 & x^{3}=1 \\
x^{2}-1=0 & x= \pm i & x^{4}-1=0 & x^{3}-1=0 \\
(x+1)(x-1)=0 & x^{2}+1=0 & (x-i)(x+i)=0 & (x-1)(x+1)\left(x^{2}+1\right)=0 \\
x=-1,1 & (x-1)(x+1)(x-i)(x+i)=0 & (x-1)\left(x^{2}+x+1\right)=0 \\
& x= \pm 1, \pm i & \left(x^{2}+x+1\right)=0 \\
& & x=-\frac{1}{2} \pm \frac{\sqrt{1-4}}{2} \\
& x=-\frac{1}{2} \pm \frac{\sqrt{-3}}{2} \\
& x=\frac{-1 \pm \sqrt{3} i}{2}, 1
\end{array}
$$

Solve these equations:

$$
\begin{array}{crr}
x^{2}=1 & x^{2}=-1 & x^{4}=1 \\
x^{2}-1=0 & x= \pm i & x^{4}-1=0 \\
(x+1)(x-1)=0 & x^{2}+1=0 & \left(x^{2}-1\right)\left(x^{2}+1\right)=0 \\
x=-1,1 & (x-i)(x+i)=0 & (x-1)(x+1)\left(x^{2}+1\right)=0 \\
& (x-1)(x-i)(x+i)=0 & x^{3}-1=0 \\
& x= \pm 1, \pm i & \left(x^{2}+x+1\right)=0 \\
& x=-\frac{1}{2}+\frac{\sqrt{1-4}}{2} \\
& x=-\frac{1}{2} \pm \frac{\sqrt{-3}}{2} \\
& x=\frac{-1 \pm \sqrt{3} i}{2}, 1
\end{array}
$$

These examples illustrate:

1) how annoying cubics can be to solve
2) how useful conjugates and quadratic solutions are
3) that polynomials of order N have N roots, which may be real or complex

With only counting numbers

Which are always solvable?

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

Which are always solvable? $\quad x_{1}+x_{2}$

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

Which are always solvable? $\quad x_{1}+x_{2} \quad x_{1}-x_{2}$

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

$$
x_{1}-x_{2}
$$

$$
x_{1} \times x_{2}
$$

$$
x_{1} \div x_{2}
$$

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

Which are always solvable?

$x_{1}-x_{2}$
$x_{1} \times x_{2}$
$x_{1} \div x_{2}$

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

Which are always solvable?

$x_{1}-x_{2}$
$x_{1} \times x_{2}$
$x_{1} \div x_{2}$

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

Which are always solvable?

$$
x_{1}+x_{2} \quad x_{1}-x_{2} \quad x_{1} \times x_{2} \div x_{2}
$$

Which are always solvable?

$$
x_{1}+x_{2} \quad x_{1}-x_{2} \quad x_{1} \times x_{2} \div x_{2}
$$

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

$x_{i} \in \mathbb{N}$

$$
x_{2}>x_{1}
$$

Which are always solvable?

$$
x_{1}+x_{2} \quad x_{1}-x_{2} \quad x_{1} \times x_{2} \div x_{2}
$$

With only counting numbers

$$
x_{i} \in\{0,1,2,3,4 \ldots\}
$$

$x_{i} \in \mathbb{N}$

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

Which are always solvable?

$$
x_{1}+x_{2} \quad x_{1}-x_{2} \quad x_{1} \div x_{2}
$$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} \quad x_{1}=d+x_{2}
$$

Which are always solvable?

$$
x_{1}+x_{2} \quad x_{1}-x_{2} \quad x_{1} \div x_{2}
$$

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

Which are always solvable?

With only counting numbers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} \quad & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers
$x_{i} \in \mathbb{Z}$

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

$$
x_{1}=n x_{2}+r
$$

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z}
$$

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

$$
\begin{array}{ll}
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad & e=\frac{x_{1}}{x_{2}} \\
& e \text { is a fraction built from } \mathbb{Z}
\end{array}
$$

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
\begin{array}{ll}
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad & e=\frac{x_{1}}{x_{2}} \\
& e \text { is a fraction built from } \mathbb{Z}
\end{array}
$$

Invent fractions
$x_{i} \in \mathbb{Q}$

Which are always solvable?

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions
$x_{i} \in \mathbb{Q}$

Which are always solvable?

$$
x_{1}+x_{2} \quad x_{1}-x_{2} \quad x_{1} \times x_{2} \div x_{2} \quad x^{2}=c \quad x^{2}=-c
$$

With only counting numbers

$$
\begin{array}{ll}
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} \quad & x_{1}=d+x_{2} \\
& \mathrm{~d} \text { is a number built from } \mathrm{N}
\end{array}
$$

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
\begin{array}{ll}
x_{1}=n x_{2}+r \quad & x_{1} \div x_{2} \notin \mathbb{Z}=\frac{x_{1}}{x_{2}} \\
& e \text { is a fraction built from } \mathrm{Z}
\end{array}
$$

Invent fractions
$x_{i} \in \mathbb{Q}$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers

$$
\begin{array}{ll}
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} & e=\frac{x_{1}}{x_{2}} \\
& \mathrm{e} \text { is a fraction built from } \mathrm{Z}
\end{array}
$$

Invent fractions
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$
d is a number built from N

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$
is a fraction built from Z
$x_{i} \in \mathbb{Q}$

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q}
$$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

$x_{1} \div x_{2} \quad x^{2}=c$
$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions
$x_{i} \in \mathbb{Q}$

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

$x_{1} \div x_{2} \quad x^{2}=c$
$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$x_{1} \div x_{2} \quad x^{2}=c$
$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

Invent fractions

$$
\begin{array}{ll}
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} & e=\frac{x_{1}}{x_{2}} \\
& e \text { is a fraction built from } Z
\end{array}
$$

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R}
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N} \quad x_{1}=d+x_{2}
$$

d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad i=\sqrt{-1}
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

Invent fractions

$$
\begin{array}{ll}
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} & e=\frac{x_{1}}{x_{2}} \\
& e \text { is a fraction built from } \mathbb{Z}
\end{array}
$$

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
\begin{array}{ll}
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad & i=\sqrt{-1} \\
& \\
& \text { define the square root of negative one }
\end{array}
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1}
$$

$$
x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
\begin{array}{ll}
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad \begin{array}{l}
i=\sqrt{-1} \quad x_{1}=i \sqrt{c}=\sqrt{c\left(i^{2}\right)}=\sqrt{-c} \\
\\
\\
\end{array} \begin{array}{l}
\text { define the square root of negative one }
\end{array}
\end{array}
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
\begin{array}{ll}
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad & i=\sqrt{-1} \quad x_{1}=i \sqrt{c}=\sqrt{c\left(i^{2}\right)}=\sqrt{-c} \\
& \text { define the square root of negative one }
\end{array}
$$

Invent complex numbers

$$
x_{1} \div x_{2}
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
\begin{array}{lll}
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad & i=\sqrt{-1} \quad x_{1}=i \sqrt{c}=\sqrt{c\left(i^{2}\right)}=\sqrt{-c} \\
& \text { define the square root of negative one }
\end{array}
$$

$$
x=a+b i
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad \begin{array}{ll}
& f=\sqrt{c} \\
& \text { fis } a \lim
\end{array}
$$

Invent reals

$$
\begin{aligned}
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad & i=\sqrt{-1} \quad x_{1}=i \sqrt{c}=\sqrt{c\left(i^{2}\right)}=\sqrt{-c} \\
& \text { define the square root of negative one }
\end{aligned}
$$

e is a fraction built from Z
f is a limit that approaches a fraction in Q
$x_{i} \in \mathbb{Z}$
$x_{i} \in \mathbb{Q}$
$x=a+b i \quad a, b \in \mathbb{R}$

$$
x_{1} \div x_{2}
$$

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad i=\sqrt{-1} \quad x_{1}=i \sqrt{c}=\sqrt{c\left(i^{2}\right)}=\sqrt{-c}
$$ define the square root of negative one

$x^{2}=-c$

With only counting numbers

$$
x_{2}>x_{1} \quad x_{1}-x_{2} \notin \mathbb{N}
$$

$x_{1}=d+x_{2}$
d is a number built from N

Invent negative integers
$x_{i} \in\{0,1,2,3,4 \ldots\}$
$x_{i} \in \mathbb{N}$

$$
x_{1}=n x_{2}+r \quad x_{1} \div x_{2} \notin \mathbb{Z} \quad e=\frac{x_{1}}{x_{2}}
$$

e is a fraction built from Z

Invent fractions

$$
c \neq \frac{p^{2}}{q^{2}} \quad x_{1}=\sqrt{c} \notin \mathbb{Q} \quad f=\sqrt{c}
$$

f is a limit that approaches a fraction in Q

Invent reals

$$
x_{1} \in \mathbb{R} \quad x_{1}^{2} \geq 0 \quad x_{1}=\sqrt{-c} \notin \mathbb{R} \quad i=\sqrt{-1} \quad x_{1}=i \sqrt{c}=\sqrt{c\left(i^{2}\right)}=\sqrt{-c}
$$ define the square root of negative one

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

(this is the final stop)

Each step here took hundreds (or thousands) of years to develop and be accepted

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Reals are complex (a+bi) with $b=0$

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Reals are complex (a+bi) with $b=0$

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Reals are complex (a+bi) with $b=0$

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$
$(a+g)+i(b+h)$			

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Reals are complex (a+bi) with $b=0$

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$
$(a+g)+i(b+h)$	$(a-g)+i(b-h)$		

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Reals are complex (a+bi) with $b=0$

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$
$(a+g)+i(b+h)$	$(a-g)+i(b-h)$	$a g+(a h) i+(b g) i+(b h)\left(i^{2}\right)$	

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Reals are complex (a+bi) with $b=0$

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$
$(a+g)+i(b+h)$	$(a-g)+i(b-h)$	$a g+(a h) i+(b g) i+(b h)\left(i^{2}\right)$	
		$a g+(a h) i+(b g) i+(b h)(-1)$	

Each step here took hundreds (or thousands) of years to develop and be accepted

It's hardly fair to call i "imaginary" - negatives were "false" as late as the 1500s

Yet we barely handle (or consider) complex numbers. Why?

Reals are complex (a+bi) with $b=0$

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$
$(a+g)+i(b+h)$	$(a-g)+i(b-h)$	$a g+(a h) i+(b g) i+(b h)\left(i^{2}\right)$	
		$a g+(a h) i+(b g) i+(b h)(-1)$	
		$(a g-b h)+(a h+b g) i$	

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$
$(a+g)+i(b+h)$	$(a-g)+i(b-h)$	$a g+(a h) i+(b g) i+(b h)\left(i^{2}\right)$	
		$a g+(a h) i+(b g) i+(b h)(-1)$	
		$(a g-b h)+(a h+b g) i$	

It is convenient to represent complex numbers as ordered pairs (a, b) to represent $a+b i$

$$
\begin{array}{cccc}
\text { Add: } & \text { Subtract } & \text { Multiply } & \text { Divide } \\
(a+b i)+(g+h i) & (a+b i)-(g+h i) & (a+b i) \times(g+h i) & (a+b i) \div(g+h i) \\
(a+g)+i(b+h) & (a-g)+i(b-h) & a g+(a h) i+(b g) i+(b h)\left(i^{2}\right) &
\end{array}
$$

It is convenient to represent complex numbers as ordered pairs (a, b) to represent $a+b i$

This will, in a bit, translate nicely into a cartesian graph coordinate

$$
\begin{array}{ccc}
\text { Add: } & \text { Subtract } & \text { Multiply }
\end{array} \text { Divide }
$$

It is convenient to represent complex numbers as ordered pairs (a, b) to represent $a+b i$

This will, in a bit, translate nicely into a cartesian graph coordinate

But for now use it as as compact representation of complex numbers:

$$
\begin{array}{ccc}
\text { Add: } & \text { Subtract } & \text { Multiply }
\end{array} \text { Divide }
$$

It is convenient to represent complex numbers as ordered pairs (a, b) to represent $a+b i$

This will, in a bit, translate nicely into a cartesian graph coordinate

But for now use it as as compact representation of complex numbers:

```
(a,b)+(g,h)=(a+g,b+h)
```

Add:	Subtract	Multiply	Divide
$(a+b i)+(g+h i)$	$(a+b i)-(g+h i)$	$(a+b i) \times(g+h i)$	$(a+b i) \div(g+h i)$
$(a+g)+i(b+h)$	$(a-g)+i(b-h)$	$a g+(a h) i+(b g) i+(b h)\left(i^{2}\right)$	

It is convenient to represent complex numbers as ordered pairs (a, b) to represent $a+b i$

This will, in a bit, translate nicely into a cartesian graph coordinate

But for now use it as as compact representation of complex numbers:
$(\mathrm{a}, \mathrm{b})+(\mathrm{g}, \mathrm{h})=(\mathrm{a}+\mathrm{g}, \mathrm{b}+\mathrm{h})$
$(a, b)^{\star}(g, h)=(a g-b h, a h+b g)$

$$
\begin{array}{ccc}
\text { Add: } & \text { Subtract } & \text { Multiply }
\end{array} \text { Divide }
$$

We have mental models for what our various operations are

We have mental models for what our various operations are

We have mental models for what our various operations are

We have mental models for what our various operations are

```
C}:(a+bi)\times(g+hi
(a,b)* (g,h) = (ag-bh, ah+bg)
```


We have mental models for what our various operations are

```
C}:(a+bi)\times(g+hi
(a,b)* (g,h) = (ag-bh, ah+bg)
```


What is our mental model for "seeing" complex numbers multiplied?

In a right triangle, by definition

Notice these are ratios - no units. The size of the triangle is ultimately irrelevant and is normalized away (by c)

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

$$
\sin (\alpha+\beta)=\frac{A B}{A O}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\sin (\alpha+\beta) & =\frac{A B}{A O} \\
& =\frac{A E+E B}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\sin (\alpha+\beta) & =\frac{A B}{A O} \\
& =\frac{A E+E B}{A O} \\
& =\frac{A E}{A O}+\frac{E B}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\sin (\alpha+\beta) & =\frac{A B}{A O} \\
& =\frac{A E+E B}{A O} \\
& =\frac{A E}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{E B}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\sin (\alpha+\beta) & =\frac{A B}{A O} \\
& =\frac{A E+E B}{A O} \\
& =\frac{A E}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{D C}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\sin (\alpha+\beta) & =\frac{A B}{A O} \\
& =\frac{A E+E B}{A O} \\
& =\frac{A E}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{D C}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{D C}{D O} * \frac{D O}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\sin (\alpha+\beta) & =\frac{A B}{A O} \\
& =\frac{A E+E B}{A O} \\
& =\frac{A E}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{D C}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{D C}{D O} * \frac{D O}{A O} \quad=\cos (\alpha) * \sin (\beta)+\sin (\alpha) * \cos (\beta)
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\sin (\alpha+\beta) & =\frac{A B}{A O} \\
& =\frac{A E+E B}{A O} \\
& =\frac{A E}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{E B}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{D C}{A O} \\
& =\frac{A E}{A D} * \frac{A D}{A O}+\frac{D C}{D O} * \frac{D O}{A O} \quad=\cos (\alpha) * \sin (\beta)+\sin (\alpha) * \cos (\beta)
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\sin (\alpha+\beta)=\cos (\alpha) * \sin (\beta)+\sin (\alpha) * \cos (\beta)
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\cos (\alpha+\beta)=\frac{O B}{A O}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\cos (\alpha+\beta) & =\frac{O B}{A O} \\
& =\frac{O C-C B}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\cos (\alpha+\beta) & =\frac{O B}{A O} \\
& =\frac{O C-C B}{A O} \\
& =\frac{O C}{A O}-\frac{C B}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\cos (\alpha+\beta) & =\frac{O B}{A O} \\
& =\frac{O C-C B}{A O} \\
& =\frac{O C}{A O}-\frac{C B}{A O} \\
& =\frac{O C}{O D} * \frac{O D}{A O}-\frac{D E}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\cos (\alpha+\beta) & =\frac{O B}{A O} \\
& =\frac{O C-C B}{A O} \\
& =\frac{O C}{A O}-\frac{C B}{A O} \\
& =\frac{O C}{O D} * \frac{O D}{A O}-\frac{D E}{A O} \\
& =\frac{O C}{O D} * \frac{O D}{A O}-\frac{D E}{A D} * \frac{A D}{A O}
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
\cos (\alpha+\beta) & =\frac{O B}{A O} \\
& =\frac{O C-C B}{A O} \\
& =\frac{O C}{A O}-\frac{C B}{A O} \\
& =\frac{O C}{O D} * \frac{O D}{A O}-\frac{D E}{A O} \\
& =\frac{O C}{O D} * \frac{O D}{A O}-\frac{D E}{A D} * \frac{A D}{A O} \\
& =\cos (\alpha) * \cos (\beta)-\sin (\alpha) * \sin (\beta)
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=\cos (\alpha) * \sin (\beta)+\sin (\alpha) * \cos (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) * \cos (\beta)-\sin (\alpha) * \sin (\beta) \\
& \cos (\alpha+\beta)=\frac{O B}{A O} \\
&=\frac{O C-C B}{A O} \\
&=\frac{O C}{A O}-\frac{C B}{A O} \\
&=\frac{O C}{O D} * \frac{O D}{A O}-\frac{D E}{A O} \\
&=\frac{O C}{O D} * \frac{O D}{A O}-\frac{D E}{A D} * \frac{A D}{A O} \\
&=\cos (\alpha) * \cos (\beta)-\sin (\alpha) * \sin (\beta)
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=\cos (\alpha) * \sin (\beta)+\sin (\alpha) * \cos (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) * \cos (\beta)-\sin (\alpha) * \sin (\beta)
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=\cos (\alpha) * \sin (\beta)+\sin (\alpha) * \cos (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) * \cos (\beta)-\sin (\alpha) * \sin (\beta)
\end{aligned}
$$

$$
a=\cos (\alpha) \quad b=\sin (\alpha)
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * \sin (\beta)+b^{*} \cos (\beta) \\
& \cos (\alpha+\beta)=a * \cos (\beta)-b^{*} \sin (\beta)
\end{aligned}
$$

$$
a=\cos (\alpha) \quad b=\sin (\alpha)
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * \sin (\beta)+b * \cos (\beta) \\
& \cos (\alpha+\beta)=a * \cos (\beta)-b * \sin (\beta)
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * h+b * g \\
& \cos (\alpha+\beta)=a * g-b * h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * h+b * g \\
& \cos (\alpha+\beta)=a * g-b * h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
(a, b)=(\cos (\alpha), \sin (\alpha))
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * h+b * g \\
& \cos (\alpha+\beta)=a * g-b * h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
(a, b)=(\cos (\alpha), \sin (\alpha))
$$

$$
(g, h)=(\cos (\beta), \sin (\beta))
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * h+b * g \\
& \cos (\alpha+\beta)=a * g-b * h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
(a, b)=(\cos (\alpha), \sin (\alpha))
$$

$$
(g, h)=(\cos (\beta), \sin (\beta))
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * h+b * g \\
& \cos (\alpha+\beta)=a * g-b * h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
(a, b)=(\cos (\alpha), \sin (\alpha))
$$

$$
(g, h)=(\cos (\beta), \sin (\beta))
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * h+b * g \\
& \cos (\alpha+\beta)=a * g-b * h
\end{aligned}
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

$$
(\mathrm{a}, \mathrm{~b})^{\star}(\mathrm{g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg})
$$

$$
\begin{aligned}
(a, b) & =(\cos (\alpha), \sin (\alpha)) \\
(g, h) & =(\cos (\beta), \sin (\beta))
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a * h+b * g \\
& \cos (\alpha+\beta)=a^{*} g-b^{*} h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
\begin{aligned}
& (a, b)=(\cos (\alpha), \sin (\alpha)) \\
& (g, h)=(\cos (\beta), \sin (\beta))
\end{aligned}
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

$$
(a, b)^{*}(g, h)=(a g-b h, a h+b g)
$$

Multiplying complex numbers is somehow like adding angles

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a^{*} h+b^{*} g \\
& \cos (\alpha+\beta)=a^{*} g-b^{*} h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
(a, b)=(\cos (\alpha), \sin (\alpha))
$$

$$
(g, h)=(\cos (\beta), \sin (\beta))
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

$$
(\mathrm{a}, \mathrm{~b})^{\star}(\mathrm{g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg})
$$

Multiplying complex numbers
is somehow like adding angles

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a^{*} h+b^{*} g \\
& \cos (\alpha+\beta)=a^{*} g-b^{*} h
\end{aligned}
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

$$
(\mathrm{a}, \mathrm{~b})^{\star}(\mathrm{g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg})
$$

Multiplying complex numbers is somehow like adding angles

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
\begin{aligned}
& (a, b)=(\cos (\alpha), \sin (\alpha)) \\
& (g, h)=(\cos (\beta), \sin (\beta))
\end{aligned}
$$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a^{*} h+b^{*} g \\
& \cos (\alpha+\beta)=a^{*} g-b^{*} h
\end{aligned}
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

$$
(\mathrm{a}, \mathrm{~b})^{\star}(\mathrm{g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg})
$$

Multiplying complex numbers is somehow like adding angles

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
\begin{aligned}
& (a, b)=(\cos (\alpha), \sin (\alpha)) \\
& (g, h)=(\cos (\beta), \sin (\beta))
\end{aligned}
$$

(a, b) were $(\cos (x), \sin (x))$ (g, h) were $(\cos (y), \sin (y))$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a^{*} h+b^{*} g \\
& \cos (\alpha+\beta)=a^{*} g-b^{*} h
\end{aligned}
$$

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
(a, b)=(\cos (\alpha), \sin (\alpha))
$$

$$
(g, h)=(\cos (\beta), \sin (\beta))
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

$$
(\mathrm{a}, \mathrm{~b})^{\star}(\mathrm{g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg})
$$

Multiplying complex numbers as if
(a, b) were $(\cos (x), \sin (x))$ and is somehow like adding angles (g, h) were $(\cos (y), \sin (y))$

If I have 2 angles, can I build their combined properties from the single angles?

$$
\begin{aligned}
& \sin (\alpha+\beta)=a^{*} h+b^{*} g \\
& \cos (\alpha+\beta)=a^{*} g-b^{*} h
\end{aligned}
$$

$(\cos (\alpha+\beta), \sin (\alpha+\beta))=(a g-b h, a h+b g)$

$$
(\mathrm{a}, \mathrm{~b})^{\star}(\mathrm{g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg})
$$

Multiplying complex numbers is somehow like adding angles

$$
\begin{array}{ll}
a=\cos (\alpha) & b=\sin (\alpha) \\
g=\cos (\beta) & h=\sin (\beta)
\end{array}
$$

$$
\begin{aligned}
& (a, b)=(\cos (\alpha), \sin (\alpha)) \\
& (g, h)=(\cos (\beta), \sin (\beta))
\end{aligned}
$$

(a, b) were $(\cos (x), \sin (x))$ (g, h) were $(\cos (y), \sin (y))$

In a right triangle, by definition

In a right triangle, by definition

In a right triangle, by definition

In a right triangle, by definition

c is a scaling factor here

$$
\begin{array}{ll}
\sin (\alpha)=\frac{o p p}{h y p}=\frac{b}{c} & b=c * \sin (\alpha) \\
\cos (\alpha)=\frac{a d j}{h y p}=\frac{a}{c} & a=c * \cos (\alpha)
\end{array}
$$

In a right triangle, by definition

c is a scaling factor here

$$
\begin{array}{ll}
\sin (\alpha)=\frac{o p p}{h y p}=\frac{b}{c} & b=c * \sin (\alpha) \\
\cos (\alpha)=\frac{a d j}{h y p}=\frac{a}{c} & a=c * \cos (\alpha)
\end{array}
$$

In a right triangle, by definition

c is a scaling factor here

$$
\begin{array}{ll}
\sin (\alpha)=\frac{o p p}{h y p}=\frac{b}{c} & b=c^{*} \sin (\alpha) \\
\cos (\alpha)=\frac{a d j}{h y p}=\frac{a}{c} & a=c^{*} \cos (\alpha)
\end{array}
$$

In a right triangle, by definition

a

c is a scaling factor here

$\cos (\alpha)=\frac{a d j}{\text { hyp }}=\frac{a}{c}$
$a=c^{*} \cos (\alpha)$
$\sin (\alpha)=\frac{b}{c}=\frac{b / c}{c / c}=\frac{b / c}{1}=\frac{o p p}{h y p}$

In a right triangle, by definition

a

$$
\sin (\alpha)=\frac{b}{c}=\frac{b / c}{c / c}=\frac{b / c}{1}=\frac{o p p}{h y p}
$$

From here on, we use unit triangles and the unit circle, to reduce nomenclature. Because we are concerned with angles, not size.

In a right triangle, by definition

$\sin (\alpha)=\frac{b}{c}=\frac{b / c}{c / c}=\frac{b / c}{1}=\frac{o p p}{h y p}$

From here on, we use unit triangles and the unit circle, to reduce nomenclature. Because we are concerned with angles, not size.
But, to do work with arbitrary complex (a,b) viewed as angles, first we show:
1.

That (a,b) can be part of a right triangle
2. That we can get c and alpha from (a,b) right triangles
3. That we can normalize triangles to unit length and correct sizes later

To talk about the complex number $a+b i$

To talk about the complex number a+bi

Im

To talk about the complex number a+bi

In a right triangle, by definition

2: If you have imaginary number (a, b)

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
c^{2}=a^{2}+b^{2}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c=\left|\sqrt{a^{2}+b^{2}}\right|
\end{aligned}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c^{*} \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| &
\end{array}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c^{*} \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c}
\end{array}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c^{*} \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c} \\
& \alpha=\cos ^{-1}\left(\frac{a}{c}\right)
\end{array}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)
3: Scaling is a non-issue: we want $|A|^{*}|B|=|A B|$

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c * \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c} \\
& \alpha=\cos ^{-1}\left(\frac{a}{c}\right)
\end{array}
$$

In a right triangle, by definition

2: If you have imaginary number (a,b)

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c * \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c} \\
& \alpha=\cos ^{-1}\left(\frac{a}{c}\right)
\end{array}
$$

3: Scaling is a non-issue: we want $|A|^{*}|B|=|A B|$
$(a, b)^{\star}(g, h)=(a g-b h, a h+b g)$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c^{*} \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c}
\end{array}
$$

$$
\alpha=\cos ^{-1}\left(\frac{a}{c}\right)
$$

3: Scaling is a non-issue: we want $|A|^{*}|B|=|A B|$

$$
\begin{gathered}
(\mathrm{a}, \mathrm{~b})^{*}(\mathrm{~g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg}) \\
\sqrt{a^{2}+b^{2}} * \sqrt{g^{2}+h^{2}}=\sqrt{\left.(a g-b h)^{2}+(a h+b g)^{2}\right)}
\end{gathered}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c * \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c} \\
& \alpha=\cos ^{-1}\left(\frac{a}{c}\right)
\end{array}
$$

3: Scaling is a non-issue: we want $|A|^{*}|B|=|A B|$

$$
\begin{gathered}
(\mathrm{a}, \mathrm{~b})^{*}(\mathrm{~g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg}) \\
\sqrt{a^{2}+b^{2}} * \sqrt{g^{2}+h^{2}}=\sqrt{\left.(a g-b h)^{2}+(a h+b g)^{2}\right)} \\
\sqrt{\left(a^{2}+b^{2}\right) *\left(g^{2}+h^{2}\right)}=\sqrt{\left(a^{2} g^{2}-2 a g b h+b^{2} h^{2}\right)+\left(a^{2} h^{2}+2 a h b g+b^{2} g^{2}\right)}
\end{gathered}
$$

$$
\begin{array}{ll}
\sin (\alpha)=\frac{o p p}{h y p}=\frac{b}{c} & b=c^{*} \sin (\alpha) \\
\cos (\alpha)=\frac{a d j}{h y p}=\frac{a}{c} & a=c * \cos (\alpha)
\end{array}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\text { 3: Scaling is a non-issue: we want }|A|^{\star}|B|=|A B|
$$

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c * \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c} \\
& \alpha=\cos ^{-1}\left(\frac{a}{c}\right)
\end{array}
$$

$$
(\mathrm{a}, \mathrm{~b})^{\star}(\mathrm{g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg})
$$

$$
\sqrt{a^{2}+b^{2}} * \sqrt{g^{2}+h^{2}}=\sqrt{\left.(a g-b h)^{2}+(a h+b g)^{2}\right)}
$$

$$
\sqrt{\left(a^{2}+b^{2}\right) *\left(g^{2}+h^{2}\right)}=\sqrt{\left(a^{2} g^{2}-2 a g b h+b^{2} h^{2}\right)+\left(a^{2} h^{2}+2 a h b g+b^{2} g^{2}\right)}
$$

$$
\sqrt{a^{2} g^{2}+a^{2} h^{2}+b^{2} g^{2}+b^{2} h^{2}}=\sqrt{\left(a^{2} g^{2}+b^{2} h^{2}\right)+\left(a^{2} h^{2}+b^{2} g^{2}\right)}
$$

In a right triangle, by definition

2: If you have imaginary number (a, b)

$$
\text { 3: Scaling is a non-issue: we want }|A|^{*}|B|=|A B|
$$

$$
\begin{array}{ll}
c^{2}=a^{2}+b^{2} & a=c * \cos (\alpha) \\
c=\left|\sqrt{a^{2}+b^{2}}\right| & \cos (\alpha)=\frac{a}{c} \\
& \alpha=\cos ^{-1}\left(\frac{a}{c}\right)
\end{array}
$$

$$
\begin{gathered}
(\mathrm{a}, \mathrm{~b})^{*}(\mathrm{~g}, \mathrm{~h})=(\mathrm{ag}-\mathrm{bh}, \mathrm{ah}+\mathrm{bg}) \\
\sqrt{a^{2}+b^{2}} * \sqrt{g^{2}+h^{2}}=\sqrt{\left.(a g-b h)^{2}+(a h+b g)^{2}\right)} \\
\sqrt{\left(a^{2}+b^{2}\right) *\left(g^{2}+h^{2}\right)}=\sqrt{\left(a^{2} g^{2}-2 a g b h+b^{2} h^{2}\right)+\left(a^{2} h^{2}+2 a h b g+b^{2} g^{2}\right)} \\
\sqrt{a^{2} g^{2}+a^{2} h^{2}+b^{2} g^{2}+b^{2} h^{2}}=\sqrt{\left(a^{2} g^{2}+b^{2} h^{2}\right)+\left(a^{2} h^{2}+b^{2} g^{2}\right)}
\end{gathered}
$$

Yup, initial sizes determine final sizes
0
θ
θ
θ
0

$$
\begin{aligned}
& Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
\end{aligned}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
\begin{aligned}
& R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& R S^{2}=(\cos (\beta-\alpha)-1)^{2}+(\sin (\beta-\alpha)-0)^{2}
\end{aligned}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
\begin{aligned}
& R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& R S^{2}=(\cos (\beta-\alpha)-1)^{2}+(\sin (\beta-\alpha)-0)^{2} \\
& R S^{2}=\left(\cos ^{2}(\beta-\alpha)-2 \cos (\beta-\alpha)+1\right)+\left(\sin ^{2}(\beta-\alpha)\right)
\end{aligned}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
\begin{aligned}
& R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& R S^{2}=(\cos (\beta-\alpha)-1)^{2}+(\sin (\beta-\alpha)-0)^{2} \\
& R S^{2}=\left(\cos ^{2}(\beta-\alpha)-2 \cos (\beta-\alpha)+1\right)+\left(\sin ^{2}(\beta-\alpha)\right) \\
& R S^{2}=2-2 \cos (\beta-\alpha)
\end{aligned}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
\begin{aligned}
& R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& R S^{2}=(\cos (\beta-\alpha)-1)^{2}+(\sin (\beta-\alpha)-0)^{2} \\
& R S^{2}=\left(\cos ^{2}(\beta-\alpha)-2 \cos (\beta-\alpha)+1\right)+\left(\sin ^{2}(\beta-\alpha)\right) \\
& R S^{2}=2-2 \cos (\beta-\alpha)
\end{aligned}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
\begin{aligned}
& R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& R S^{2}=(\cos (\beta-\alpha)-1)^{2}+(\sin (\beta-\alpha)-0)^{2} \\
& R S^{2}=\left(\cos ^{2}(\beta-\alpha)-2 \cos (\beta-\alpha)+1\right)+\left(\sin ^{2}(\beta-\alpha)\right) \\
& R S^{2}=2-2 \cos (\beta-\alpha)
\end{aligned}
$$

Both lines were rotated by equal amounts, so $\mathrm{RS}=\mathrm{PQ}$

$$
R S^{2}=Q P^{2}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

$$
\begin{aligned}
& R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& R S^{2}=(\cos (\beta-\alpha)-1)^{2}+(\sin (\beta-\alpha)-0)^{2} \\
& R S^{2}=\left(\cos ^{2}(\beta-\alpha)-2 \cos (\beta-\alpha)+1\right)+\left(\sin ^{2}(\beta-\alpha)\right) \\
& R S^{2}=2-2 \cos (\beta-\alpha)
\end{aligned}
$$

$$
\begin{gathered}
R S^{2}=Q P^{2} \\
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha)+\sin (\beta) \sin (\alpha)
\end{gathered}
$$

$$
Q P^{2}=\delta_{R e}^{2}+\delta_{I m}^{2}
$$

$$
Q P^{2}=(\cos (\beta)-\cos (\alpha))^{2}+(\sin (\beta)-\sin (\alpha))^{2}
$$

$$
Q P^{2}=\left(\cos ^{2}(\beta)-2 \cos (\beta) \cos (\alpha)+\cos ^{2}(\alpha)\right)+\left(\sin ^{2}(\beta)-2 \sin (\beta) \sin (\alpha)+\sin ^{2}(\alpha)\right)
$$

$$
\left.Q P^{2}=2-2(\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)\right)
$$

THIS TIME WE PLACED NO LIMITS ON ANGLES INVOLVED!

$$
\begin{aligned}
& R S^{2}=\delta_{R e}^{2}+\delta_{I m}^{2} \\
& R S^{2}=(\cos (\beta-\alpha)-1)^{2}+(\sin (\beta-\alpha)-0)^{2} \\
& R S^{2}=\left(\cos ^{2}(\beta-\alpha)-2 \cos (\beta-\alpha)+1\right)+\left(\sin ^{2}(\beta-\alpha)\right) \\
& R S^{2}=2-2 \cos (\beta-\alpha)
\end{aligned}
$$

NOW ROTATE BOTH LINES BY ANGLE -alpha
(i.e., add -alpha to each angle)

Both lines were rotated by equal amounts, so RS=PQ

$$
\begin{gathered}
R S^{2}=Q P^{2} \\
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha)+\sin (\beta) \sin (\alpha)
\end{gathered}
$$

In a right triangle, by definition

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

$$
\sigma=\frac{\pi}{2}-\alpha
$$

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

$$
\sigma=\frac{\pi}{2}-\alpha \quad \sin (\sigma)=\frac{o p p}{h y p}=\frac{a}{c}=\cos (\alpha)
$$

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

$$
\left.\begin{array}{rl}
\sigma=\frac{\pi}{2}-\alpha & \sin (\sigma)
\end{array}=\frac{o p p}{h y p}=\frac{a}{c}=\cos (\alpha) ~ 子 \begin{array}{l}
\cos (\sigma)
\end{array}\right) \frac{a d j}{h y p}=\frac{b}{c}=\sin (\alpha)
$$

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

$$
\sigma=\frac{\pi}{2}-\alpha \quad \begin{aligned}
& \sin (\sigma)=\frac{o p p}{h y p}=\frac{a}{c}=\cos (\alpha) \\
& \cos (\sigma)=\frac{a d j}{h y p}=\frac{b}{c}=\sin (\alpha)
\end{aligned}
$$

This is a triangle-centric view where we treat all angles as if they were less than 90 degrees

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

$$
\begin{array}{ll}
\sigma=\frac{\pi}{2}-\alpha \quad \sin (\sigma)=\frac{o p p}{h y p}=\frac{a}{c}=\cos (\alpha) \quad \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha) \\
\cos (\sigma)=\frac{a d j}{h y p}=\frac{b}{c}=\sin (\alpha)
\end{array}
$$

This is a triangle-centric view where we treat all angles as if they were less than 90 degrees

In a right triangle, by definition

For complementary angles, their sines and cosines are exchanged

$$
\begin{array}{ll}
\sigma=\frac{\pi}{2}-\alpha & \sin (\sigma)=\frac{o p p}{h y p}=\frac{a}{c}=\cos (\alpha) \\
\cos (\sigma)=\frac{a d j}{h y p}=\frac{b}{c}=\sin (\alpha) & \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{array}
$$

This is a triangle-centric view where we treat all angles as if they were less than 90 degrees

$\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)$

Trick 1: use -a to get additive angles

$$
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)
$$

Trick 1: use -a to get additive angles

$$
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)
$$

Trick 1: use -a to get additive angles

$$
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha)
$$

$$
\begin{gathered}
\cos (\beta-(-\alpha))=\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{gathered}
\cos (\beta-(-\alpha))=\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

Trick 2: find cos of complementary angle of a: (90-a)

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha)
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{gathered}
\cos (\beta-(-\alpha))=\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{gathered}
\cos (\beta-(-\alpha))=\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{gathered}
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

Trick 1: use -a to get additive angles

$$
\begin{gathered}
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right)
$$

Trick 1: use -a to get additive angles

$$
\begin{gathered}
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{gathered}
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\cos \left(\frac{\pi}{2}-z\right)=\sin (z)
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\cos \left(\frac{\pi}{2}-z\right)=\sin (z)
$$

$$
\sin \left(\frac{\pi}{2}-z\right)=\cos (z)
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\cos \left(\frac{\pi}{2}-z\right)=\sin (z)
$$

$$
\sin \left(\frac{\pi}{2}-z\right)=\cos (z)
$$

Now find sin of combined angles

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\cos \left(\frac{\pi}{2}-z\right)=\sin (z)
$$

$$
\sin \left(\frac{\pi}{2}-z\right)=\cos (z)
$$

Now find sin of combined angles

$$
\sin (\beta+\alpha)=\cos \left(\frac{\pi}{2}-(\beta+\alpha)\right)
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-z\right)=\sin (z) \\
& \sin \left(\frac{\pi}{2}-z\right)=\cos (z)
\end{aligned}
$$

Now find sin of combined angles

$$
\begin{aligned}
& \sin (\beta+\alpha)=\cos \left(\frac{\pi}{2}-(\beta+\alpha)\right) \\
& \left.\sin (\beta+\alpha)=\cos \left(\left(\frac{\pi}{2}-\beta\right)-\alpha\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\cos \left(\frac{\pi}{2}-z\right)=\sin (z)
$$

$$
\sin \left(\frac{\pi}{2}-z\right)=\cos (z)
$$

Now find sin of combined angles

$$
\begin{aligned}
\sin (\beta+\alpha) & =\cos \left(\frac{\pi}{2}-(\beta+\alpha)\right) \\
\sin (\beta+\alpha) & \left.=\cos \left(\left(\frac{\pi}{2}-\beta\right)-\alpha\right)\right) \\
& =\cos \left(\frac{\pi}{2}-\beta\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}-\beta\right) \sin (\alpha)
\end{aligned}
$$

$$
\begin{gathered}
\cos (\beta-(-\alpha))=\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-z\right)=\sin (z) \\
& \sin \left(\frac{\pi}{2}-z\right)=\cos (z)
\end{aligned}
$$

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-z\right)=\sin (z) \\
& \sin \left(\frac{\pi}{2}-z\right)=\cos (z)
\end{aligned}
$$

Now find sin of combined angles

$$
\begin{aligned}
\sin (\beta+\alpha) & =\cos \left(\frac{\pi}{2}-(\beta+\alpha)\right) \\
\sin (\beta+\alpha) & \left.=\cos \left(\left(\frac{\pi}{2}-\beta\right)-\alpha\right)\right) \\
& =\cos \left(\frac{\pi}{2}-\beta\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}-\beta\right) \sin (\alpha)
\end{aligned}
$$

$$
\sin (\beta+\alpha)=\sin (\beta) \cos (\alpha)+\cos (\beta) \sin (\alpha)
$$

$$
\sin (\beta-\alpha)=\sin (\beta) \cos (\alpha)-\cos (\beta) \sin (\alpha)
$$

$$
\begin{gathered}
\cos (\beta-(-\alpha))=\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-z\right)=\sin (z) \\
& \sin \left(\frac{\pi}{2}-z\right)=\cos (z)
\end{aligned}
$$

$$
\begin{gathered}
\cos (\beta-(-\alpha))=\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Trick 3: reverse and find sin of complementary angle (90-a)

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
\end{aligned}
$$

$$
\begin{gathered}
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{gathered}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-z\right)=\sin (z) \\
& \sin \left(\frac{\pi}{2}-z\right)=\cos (z)
\end{aligned}
$$

Trick 1: use -a to get additive angles

$$
\begin{aligned}
\cos (\beta-(-\alpha)) & =\cos (\beta) \cos (-\alpha)+\sin (\beta) \sin (-\alpha) \\
\cos (\beta+\alpha) & =\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)
\end{aligned}
$$

Trick 2: find cos of complementary angle of a: (90-a)

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}\right) \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=0 * \cos (\alpha)+1 * \sin (\alpha) \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
\end{aligned}
$$

Now find sin of combined angles

$$
\begin{array}{rlrl}
\sin (\beta+\alpha) & =\cos \left(\frac{\pi}{2}-(\beta+\alpha)\right) & & \text { Trick 3: reverse and find sin of compler } \\
\sin (\beta+\alpha) & \left.=\cos \left(\left(\frac{\pi}{2}-\beta\right)-\alpha\right)\right) & & \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\left(\frac{\pi}{2}-\alpha\right)\right) \\
& =\cos \left(\frac{\pi}{2}-\beta\right) \cos (\alpha)+\sin \left(\frac{\pi}{2}-\beta\right) \sin (\alpha) & \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \left(\frac{\pi}{2}-\frac{\pi}{2}+\alpha\right) \\
\sin (\beta+\alpha) & =\sin (\beta) \cos (\alpha)+\cos (\beta) \sin (\alpha) & \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha) \\
\sin (\beta-\alpha) & =\sin (\beta) \cos (\alpha)-\cos (\beta) \sin (\alpha) &
\end{array}
$$

Trick 3: reverse and find sin of complementary angle (90-a)
** don't get misled - complementary angles are a trig concept in triangles **
** the pi/2 lead/lag is true in the general trig concept of functions at all x **

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

We have from triangles

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(complementary angles)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$$
\begin{array}{lll}
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha) & \cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right) \\
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha) & \sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
\end{array}
$$

(complementary angles)

(leading/lagging relations)

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha) & \cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
\end{array} \quad \sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

(complementary angles)

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)$
$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

$$
\sin \left(\frac{\pi}{2}-\alpha-\pi\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

(complementary angles)

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha) & \cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right) \\
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha) & \sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
\end{array}
$$

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin \left(\frac{\pi}{2}-\alpha-\pi\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

(complementary angles)

$$
\sin \left(-\frac{\pi}{2}-\alpha\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha) & \cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right) \\
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha) & \sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right) \\
& \cos (-x)=\cos (x)
\end{array}
$$

(complementary angles)
(leading/lagging relations)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin \left(\frac{\pi}{2}-\alpha-\pi\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin \left(-\frac{\pi}{2}-\alpha\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin \left(-\left(\frac{\pi}{2}+\alpha\right)\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha) & \cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right) \\
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha) & \sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right) \\
& \cos (-x)=\cos (x)
\end{array}
$$

(leading/lagging relations)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin \left(\frac{\pi}{2}-\alpha-\pi\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin \left(-\frac{\pi}{2}-\alpha\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin \left(-\left(\frac{\pi}{2}+\alpha\right)\right)=-\cos (\alpha)=-\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (-x)=-\sin (x)
$$

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

visibly, cos lags sin

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

visibly, cos lags sin

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

visibly, cos lags sin

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

visibly, cos lags sin

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

visibly, cos lags sin

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$

$$
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)
$$

(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

visibly, cos lags sin

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

visibly, cos lags sin

and we have the pi/2 sled

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

visibly, cos lags sin

and we have the $\mathrm{pi} / 2$ sled

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

visibly, cos lags sin

and we have the $\mathrm{pi} / 2$ sled

$$
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)
$$

$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

and we have the pi/2 sled

visibly, cos lags sin

(leading/lagging relations)

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

visibly, cos lags sin

and we have the pi/2 sled

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

visibly, cos lags sin

and we have the $\mathrm{pi} / 2$ sled

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

visibly, cos lags sin

and we have the pi/2 sled

$\sin \left(\frac{\pi}{2}-\alpha\right)=\cos (\alpha)$
$\cos \left(\frac{\pi}{2}-\alpha\right)=\sin (\alpha)$
(complementary angles)

$$
\cos (\alpha)=\sin \left(\alpha+\frac{\pi}{2}\right)
$$

$$
\sin (\alpha)=\cos \left(\alpha-\frac{\pi}{2}\right)
$$

(leading/lagging relations)

visibly, cos lags sin

and we have the pi/2 sled

Full of math?

Full of math?

We opened by talking about complex numbers

Full of math?

We opened by talking about complex numbers

You derived an expression for multiplying complex numbers

Full of math?

We opened by talking about complex numbers

You derived an expression for multiplying complex numbers

You saw if complex numbers are viewed as angled vectors, multiplying is like adding angles

Full of math?

We opened by talking about complex numbers

You derived an expression for multiplying complex numbers

You saw if complex numbers are viewed as angled vectors, multiplying is like adding angles

We saw we could normalize vectors to unit length (and unnormalize later)

Full of math?

We opened by talking about complex numbers

You derived an expression for multiplying complex numbers

You saw if complex numbers are viewed as angled vectors, multiplying is like adding angles

We saw we could normalize vectors to unit length (and unnormalize later)

And we have developed general ways to add angles

Full of math?

We opened by talking about complex numbers

You derived an expression for multiplying complex numbers

You saw if complex numbers are viewed as angled vectors, multiplying is like adding angles

We saw we could normalize vectors to unit length (and unnormalize later)

And we have developed general ways to add angles

With complex vectors in the imaginary plane:

$$
\begin{aligned}
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha) \\
& \sin (\beta+\alpha)=\sin (\beta) \cos (\alpha)+\cos (\beta) \sin (\alpha)
\end{aligned}
$$

```
cos(\beta-\alpha)=\operatorname{cos}(\beta)\operatorname{cos}(\alpha))+\operatorname{sin}(\beta)\operatorname{sin}(\alpha)
    sin}(\beta-\alpha)=\operatorname{sin}(\beta)\operatorname{cos}(\alpha)-\operatorname{cos}(\beta)\operatorname{sin}(\alpha
```

With complex vectors in the imaginary plane:

Multiplying vectors is adding angles

$$
\begin{aligned}
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha) \\
& \sin (\beta+\alpha)=\sin (\beta) \cos (\alpha)+\cos (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{gathered}
\cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
\sin (\beta-\alpha)=\sin (\beta) \cos (\alpha)-\cos (\beta) \sin (\alpha)
\end{gathered}
$$

With complex vectors in the imaginary plane:

Multiplying vectors is adding angles

$$
\begin{aligned}
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha) \\
& \sin (\beta+\alpha)=\sin (\beta) \cos (\alpha)+\cos (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \sin (\beta-\alpha)=\sin (\beta) \cos (\alpha)-\cos (\beta) \sin (\alpha)
\end{aligned}
$$

We can take (a, b), normalize, work in unit vectors,
and multiply by needed length at the end

With complex vectors in the imaginary plane:

Multiplying vectors is adding angles

$$
\begin{aligned}
& \cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha) \\
& \sin (\beta+\alpha)=\sin (\beta) \cos (\alpha)+\cos (\beta) \sin (\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \sin (\beta-\alpha)=\sin (\beta) \cos (\alpha)-\cos (\beta) \sin (\alpha)
\end{aligned}
$$

We can take (a, b), normalize, work in unit vectors,
and multiply by needed length at the end

MULTIPLYING COMPLEX NUMBERS IS ROTATING

With complex vectors in the imaginary plane:

Multiplying vectors is adding angles
$\cos (\beta+\alpha)=\cos (\beta) \cos (\alpha)-\sin (\beta) \sin (\alpha)$
$\sin (\beta+\alpha)=\sin (\beta) \cos (\alpha)+\cos (\beta) \sin (\alpha)$

$$
\begin{aligned}
& \cos (\beta-\alpha)=\cos (\beta) \cos (\alpha))+\sin (\beta) \sin (\alpha) \\
& \sin (\beta-\alpha)=\sin (\beta) \cos (\alpha)-\cos (\beta) \sin (\alpha)
\end{aligned}
$$

We can take (a, b), normalize, work in unit vectors,
and multiply by needed length at the end

MULTIPLYING COMPLEX NUMBERS IS ROTATING

0
0

Magnitudes must be on unit circle

Rephrase: what angles added twice end at $(1,0)$?

Magnitudes must be on unit circle

Rephrase: what angles added twice end at $(1,0)$?
$(1,0)$: angle of 0 stays there

Magnitudes must be on unit circle

Rephrase: what angles added twice end at $(1,0)$?
$(1,0)$: angle of 0 stays there
$(-1,0)$: angle of pi twice becomes 2pi

Magnitudes must be on unit circle

Rephrase: what angles added twice end at $(1,0)$?
$(1,0)$: angle of 0 stays there
$(-1,0)$: angle of pi twice becomes 2pi

Magnitudes must be on unit circle

Rephrase: what angles added twice end at $(1,0)$?
$(1,0)$: angle of 0 stays there
$(-1,0)$: angle of pi twice becomes 2pi

Magnitudes must be on unit circle

Rephrase: what angles added twice end at $(1,0)$?
$(1,0)$: angle of 0 stays there
$(-1,0)$: angle of pi twice becomes 2pi
0

Rephrase: what angles added three times are multiples of 2pi?

Rephrase: what angles added three times are multiples of 2pi?
0

Rephrase: what angles added four times are 0 ?

Rephrase: what angles added four times are 0 ?

Rephrase: what angles added four times are 0 ?

Rephrase: what angles added four times are 0 ?

Rephrase: what angles added four times are 0 ?
0

Rephrase: what angles added twice point to (a, b) ?

Rephrase: what angles added twice point to (a, b) ?

0

Rephrase: what angles added thrice point to (a, b) ?

Rephrase: what angles added thrice point to (a, b) ?

Rephrase: what angles added thrice point to (a, b) ?

Rephrase: what angles added thrice point to (a, b) ?

Rephrase: what angles added thrice point to (a, b) ?

Rephrase: what angles added thrice point to (a, b) ?

Rephrase: what angles added thrice point to (a, b) ?
0
0
0
θ
0

0

Q6: Do you "see" division yet?

Q6: Do you "see" division yet?

