Mental exercise: finding square roots after the apocalypse

Find:

$$
\sqrt{4}
$$

$\sqrt{5}$

$\square 1$
\square

If a line be cut in equal and unequal segments, the square on the half is equal to
the rectangle of the unequal segments and the square on the segment between cuts

If a line be cut in equal and unequal segments, the square on the half is equal to
the rectangle of the unequal segments and the square on the segment between cuts

If a line be cut in equal and unequal segments, the square on the half is equal to
the rectangle of the unequal segments and the square on the segment between cuts

$$
\left(\frac{x+y}{2}\right)^{2}=x y+\left(\frac{x-y}{2}\right)^{2}
$$

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

?

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

$$
\left(\frac{x}{2}+y\right)^{2}=(x+y) y+\left(\frac{x}{2}\right)^{2}
$$

True. But it doesn't seem nice. Let's try again.

$$
y+\frac{x-y}{2}
$$

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

$$
\frac{x+y}{2}
$$

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

$$
\left(\frac{x+y}{2}\right)^{2}=x y+\left(\frac{x-y}{2}\right)^{2}
$$

If a line be cut in equal and unequal segments,
the square on the half is equal to
the rectangle of the unequal segments and the square on the segment between cuts

$\beta=90-\alpha$
3 similar right triangles.

3 similar right triangles.

$$
\begin{aligned}
& \frac{x}{\sqrt{x y}}=\frac{\sqrt{x y}}{y} \\
& x y=(\sqrt{x y})^{2}
\end{aligned}
$$

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

$$
\left(\frac{x+y}{2}\right)^{2}=x y+\left(\frac{x-y}{2}\right)^{2}
$$

These are special cases of a more general truth...

If a line be cut in equal parts, and to that another line be added,
the square on the half and added part is equal to
the rectangle of the original and added segments with the added sement and the square on half the original segment

$$
\left(\frac{x+y}{2}\right)^{2}=x y+\left(\frac{x-y}{2}\right)^{2}
$$

Two chords cut each other
such that
the rectangles on their segments are equal

Two chords cut each other
such that
the rectangles on their segments are equal

Two chords cut each other
such that
the rectangles on their segments are equal

Two chords cut each other
such that
the rectangles on their segments are equal

Two chords cut each other
such that
the rectangles on their segments are equal

Two chords cut each other
such that
the rectangles on their segments are equal

Two chords cut each other
such that
the rectangles on their segments are equal

Two chords cut each other such that
the rectangles on their segments are equal

Two chords cut each other such that
the rectangles on their segments are equal

True of any and all chords of any length or intersecting angle?

Two chords cut each other such that
the rectangles on their segments are equal

Two chords cut each other such that
the rectangles on their segments are equal

X

$■ X Z=\square Z K+\square X K^{*} K Y$
$\square X Z+\square Z O=\square Z O+\square Z K+\square X K^{*} K Y$
$■ X O=\square K O+\square X K^{*} K Y$
$■ B O=\square K O+\square B K^{*} K A$
$\square X O=\square K O+\square X K^{*} K Y$
$\square B K^{*} K A=\square X K^{*} K Y$

$■ X Z=\square Z K+\square X K^{*} K Y$
$\square X Z+\square Z O=\square Z O+\square Z K+\square X K^{*} K Y$
$■ X O=\square K O+\square X K^{*} K Y$

Two chords cut each other
such that
the rectangles on their segments are equal

Recipe for sqrt(N):
$\mathrm{N}=\mathrm{pq}$ (could be 1,N)
Draw diameter $\mathrm{p}+\mathrm{q}$, and its circumference Mark p

At p draw perpendicular h to circumference (diameters bisect perpendicular chords)
h* $\mathrm{h}=\mathrm{p}^{\star} \mathrm{q}=\mathrm{N}$ by above theorem

Questions

I claimed without proof that triangles drawn on diameters are right. Are they? Why?

Hint: start by drawing CO and identifying isosceles triangles

I also claimed without proof that a diameter cutting a chord at right angles is a bisection of the chord. (I could also have said: a diameter that bisects a chord does so at right angles). Why is all that true?

Consider tangent XY and the statement $■ \mathrm{XY}=\square X A^{*} \mathrm{XB}$. Why is this true?
This is another method to derive square roots.

Hint: consider the line $X B$, in which $A B$ is divided into equal sections and $X A$ added to it

Consider $■ X Y=\square X A^{*} X B$. Is this true when $X B$ does NOT include the diameter?

Hint: yes, but why?

Does the size of the circle matter to the truth of the construct?
What constraint on the solution space does the circle represent?

Reverse the construct: suppose I have a square root (XY), and I want to know how to reapportion its square area into a rectangle (XA*?).

