
Mental exercise: finding square roots after the apocalypse
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If a line be cut in equal and unequal segments, 

the square on the half is equal to 


the rectangle of the unequal segments and the square on the segment between cuts



x + y
2

x

If a line be cut in equal and unequal segments, 

the square on the half is equal to 


the rectangle of the unequal segments and the square on the segment between cuts

y

?



x + y
2

x

If a line be cut in equal and unequal segments, 

the square on the half is equal to 


the rectangle of the unequal segments and the square on the segment between cuts

y

x − y
2

( x + y
2 )

2
= xy + (x − y

2 )
2

























If a line be cut in equal parts, and to that another line be added,

the square on the half and added part is equal to 


the rectangle of the original and added segments with the added sement and the square on half the original segment
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True. But it doesn’t seem nice. Let’s try again.
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the square on the half and added part is equal to 
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find sqrt













If a line be cut in equal and unequal segments, 

the square on the half is equal to 


the rectangle of the unequal segments and the square on the segment between cuts
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3 similar right triangles.
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These are special cases of a more general truth…
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Two chords cut each other 

such that


the rectangles on their segments are equal
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True of any and all chords of any length or intersecting angle?
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◼︎XZ = ◼︎ZK + ⎕ XK*KY

◼︎XZ+◼︎ZO = ◼︎ZO +◼︎ZK + ⎕ XK*KY

◼︎XO = ◼︎KO + ⎕ XK*KY

◼︎BC = ◼︎CK + ⎕ BK*KA

◼︎BC+◼︎CO = ◼︎CO +◼︎CK + ⎕ BK*KA

◼︎BO = ◼︎KO + ⎕ BK*KA
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Two chords cut each other 

such that


the rectangles on their segments are equal

Recipe for sqrt(N):

N=pq (could be 1,N)

Draw diameter p+q, and its circumference

Mark p

At p draw perpendicular h to circumference

(diameters bisect perpendicular chords)

h*h = p*q = N by above theorem



Questions



Questions

I claimed without proof that triangles drawn on diameters are right. Are they? Why?
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Hint: start by drawing CO and identifying isosceles triangles



Questions

I also claimed without proof that a diameter cutting a chord at right angles is a bisection of the chord.

(I could also have said: a diameter that bisects a chord does so at right angles). Why is all that true?
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Questions

Consider tangent XY and the statement ◼︎XY = ⎕ XA*XB. Why is this true?
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This is another method to derive square roots.

Hint: consider the line XB, in which AB is divided into equal sections and XA added to it



Questions

Consider ◼︎XY = ⎕ XA*XB. Is this true when XB does NOT include the diameter?
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Hint: yes, but why?



Questions

Does the size of the circle matter to the truth of the construct? 

What constraint on the solution space does the circle represent?
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Reverse the construct: suppose I have a square root (XY), and I want to know how to

reapportion its square area into a rectangle (XA*?).


