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WHY THIS TORTURED LANGUAGE?
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I'll show 2 examples from 400 BC.
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Note that I.1-I.5 were "constructive" proofs. We set up a situation,


and then proved the consequence step by step. I.6 will be different.
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We falsely supposed that the sides were unequal

This led to an absurd situation

So the false supposition must be abandoned - the sides are equal

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

PROOF BY CONTRADICTION
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Euclid's Elements

We just established the most important property of isosceles trianges.

Book I of the Elements is capped by proving the Pythagorean Theorem.

The next Proof by Contradiction arises immediately.

Suppose you construct an isosceles, and make it a right triangle.

Which is about a special property of right triangles.

What kind of number is sqrt(2)? Is it measurable?
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Thus, evens square to evens, odds to odds
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Proof by contradiction #2: prove the existence of irrational numbers

We falsely supposed rational numbers could be square roots of 2

Then found this led to an absurd situation

Which could not be true

The math is right, which means our suppositions are wrong 

So we reject our false supposition

And thus prove the existence of a non-rational kind of number
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This H0 construct, which reads awkwardly in language

- is logically sound

- is historically routine 

- is a powerful tool

So even though the H0 construct isn't how we typically think,

and is certainly not how we typically speak,

it is a sensible way to frame statistical problems.
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We CAN generate a good null hypothesis

But we CANNOT say H0 is for sure false

Instead, we say H0 is unlikely, and how unlikely
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Height in boys and girls

I suspect they differ, and I make measurements

H0: measurements grouped by sex do not differ
(from the measurements grouped randomly)

How can I test H0? See if it is true?
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And set a threshold to exclude most

So that we can usually reject true H0

Customarily at a 95% success rate
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Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary
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2^n total groups, but each with 2 versions (e.g., 0001, 1110)

2^8=256 2^10=1024 2^20=1M
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Often, the challenge people face is what to permute.

Recipe: 

1) Identify the relationship that matters. 

2) Destroy ONLY that relationship, by permutation. 
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You have two BOLD timeseries and would like to compare them

Pearson r

Has a parametric p value (more samples -> higher confidence)

But BOLD data autocorrelated, scrambling destroys that too

Downsample to every ~5 seconds?

Negate autocorrelation, but lose samples samples and power

Why not get an empirical p by permuting the timepoints?

E.g., 125 samples become 60 in a 5 min scan. Ouch!
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You have two BOLD timeseries and would like to compare them

Pearson r

Has a parametric p value (more samples -> higher confidence)

Decent idea, but watch for periodic phenomena

What if I compared timeseries to another scan or person?

Spatial registration, brain folding, global signals, etc etc etc

Why not get an empirical p by permuting the timepoints cyclically?
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Autocorrelated timeseries

Cyclic shift randomly
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You have two BOLD timeseries and would like to compare them

Pearson r

Has a parametric p value (more samples -> higher confidence)

What if… I took the second timeseries


used Fourier transform


permuted phase but kept power


reconstructed signals


and used that as a null model?

Not shabby

Example 3



Autocorrelated timeseries

FFT -> permuted phase -> IFFT

Example 3
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Generating hypotheses only to discard them is a tradition

In sum

When the tradition is recognized, it helps us see how H0 works

The virtue of permutation testing is we can make H0 true!

And choose what we mean by H0 is likely/certainly false

The hard part is choosing the framework for permutation


