Mental exercise:

Rejecting the null hypothesis

What is a null hypothesis?

What is a null hypothesis?

Typically a dummy argument

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
E.g. you measure height in girls and boys

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
E.g. you measure height in girls and boys
- you suspect they differ

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
E.g. you measure height in girls and boys
- you suspect they differ
- null hypothesis (H0): boys and girls have the same height

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
- this is a kind of false hypothesis, a negative statement of truth

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
- this is a kind of false hypothesis, a negative statement of truth
- H0 phrased: two samples drawn from the same distribution

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
- this is a kind of false hypothesis, a negative statement of truth
- H0 phrased: two samples drawn from the same distribution
- p value:

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
- this is a kind of false hypothesis, a negative statement of truth
- H0 phrased: two samples drawn from the same distribution
- p value:
- rate of getting a false positive result

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
- this is a kind of false hypothesis, a negative statement of truth
- H0 phrased: two samples drawn from the same distribution
- p value:
- rate of getting a false positive result
- rate at which you would find a difference if there is no difference

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
- this is a kind of false hypothesis, a negative statement of truth
- H0 phrased: two samples drawn from the same distribution
- p value:
- rate of getting a false positive result
- rate at which you would find a difference if there is no difference
- rate that you "fail to reject H0" - a TRIPLE NEGATIVE!

What is a null hypothesis?

Typically a dummy argument

- that something suspected to happen actually does not
- this is a kind of false hypothesis, a negative statement of truth
- H0 phrased: two samples drawn from the same distribution
- p value:
- rate of getting a false positive result
- rate at which you would find a difference if there is no difference
- rate that you "fail to reject HO" - a TRIPLE NEGATIVE!

WHY THIS TORTURED LANGUAGE?

Because the people who invented the tests were well-trained.

Because the people who invented the tests were well-trained.

Such constructions were second nature to them 100+ years ago.

Because the people who invented the tests were well-trained.

Such constructions were second nature to them 100+ years ago.

Creating and then rejecting a false hypothesis is an ancient technique.

Because the people who invented the tests were well-trained.

Such constructions were second nature to them 100+ years ago.

Creating and then rejecting a false hypothesis is an ancient technique.

Called PROOF BY CONTRADICTION

Because the people who invented the tests were well-trained.

Such constructions were second nature to them 100+ years ago.

Creating and then rejecting a false hypothesis is an ancient technique.

Called PROOF BY CONTRADICTION

I'll show 2 examples from 400 BC .

Euclid's Elements

I.1: given a line segment, construct an equilateral triangle

Euclid's Elements

I.1: given a line segment, construct an equilateral triangle

Euclid's Elements

I.1: given a line segment, construct an equilateral triangle

Euclid's Elements

I.1: given a line segment, construct an equilateral triangle

Euclid's Elements

I.1: given a line segment, construct an equilateral triangle

Euclid's Elements

I.1: given a line segment, construct an equilateral triangle

Euclid's Elements

I.1: given a line segment, construct an equilateral triangle

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.2: move a line segment somewhere else

Euclid's Elements

I.3: to cut off a segment of a line at a point, equal to a given segment

Euclid's Elements

I.3: to cut off a segment of a line at a point, equal to a given segment

Euclid's Elements

I.3: to cut off a segment of a line at a point, equal to a given segment

Euclid's Elements

I.3: to cut off a segment of a line at a point, equal to a given segment

Euclid's Elements

I.4: if two triangles have an angle the same and the angle-enclosing sides are the same, then the triangles are the same (SAS theorem)

Euclid's Elements

I.4: if two triangles have an angle the same and the angle-enclosing sides are the same, then the triangles are the same (SAS theorem)

Euclid's Elements

I.4: if two triangles have an angle the same and the angle-enclosing sides are the same, then the triangles are the same (SAS theorem)

Proof is by superposition

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex
3. SAS about lower angle

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex
3. SAS about lower angle

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex
3. SAS about lower angle

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex
3. SAS about lower angle

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex
3. SAS about lower angle

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex
3. SAS about lower angle

Euclid's Elements

I.5: in triangles, equal sides imply equal subtended angles.

1. Add identical lengths
2. SAS about apex
3. SAS about lower angle

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Note that I.1-I. 5 were "constructive" proofs. We set up a situation, and then proved the consequence step by step. I. 6 will be different.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 1: suppose the subtended sides were NOT equal

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 1: suppose the subtended sides were NOT equal

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 1: suppose the subtended sides were NOT equal Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 1: suppose the subtended sides were NOT equal Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 1: suppose the subtended sides were NOT equal Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 1: suppose the subtended sides were NOT equal Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 3: by SAS these triangles are equal

Step 1: suppose the subtended sides were NOT equal Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 3: by SAS these triangles are equal Step 4: thats crazy! - one is in the other!

Step 1: suppose the subtended sides were NOT equal
Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 3: by SAS these triangles are equal Step 4: thats crazy! - one is in the other!

Step 1: suppose the subtended sides were NOT equat
Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Step 3: by SAS these triangles are equal Step 4: thats crazy! - one is in the other!

sides must be equal
Step 1: suppose the subtended-sides were NOT equat
Step 2: cut the longer side down until equal sides are obtained

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

PROOF BY CONTRADICTION

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

PROOF BY CONTRADICTION

We falsely supposed that the sides were unequal

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

PROOF BY CONTRADICTION

We falsely supposed that the sides were unequal
This led to an absurd situation

Euclid's Elements

I.6: in triangles, equal angles imply equal subtended sides.

PROOF BY CONTRADICTION

We falsely supposed that the sides were unequal
This led to an absurd situation
So the false supposition must be abandoned - the sides are equal

Euclid's Elements

Euclid's Elements

We just established the most important property of isosceles trianges.

Euclid's Elements

We just established the most important property of isosceles trianges.

Book I of the Elements is capped by proving the Pythagorean Theorem.

Euclid's Elements

We just established the most important property of isosceles trianges.

Book I of the Elements is capped by proving the Pythagorean Theorem.

Which is about a special property of right triangles.

Euclid's Elements

We just established the most important property of isosceles trianges.

Book I of the Elements is capped by proving the Pythagorean Theorem.

Which is about a special property of right triangles.

The next Proof by Contradiction arises immediately.

Euclid's Elements

We just established the most important property of isosceles trianges.

Book I of the Elements is capped by proving the Pythagorean Theorem.

Which is about a special property of right triangles.

The next Proof by Contradiction arises immediately.

Suppose you construct an isosceles, and make it a right triangle.

Euclid's Elements

We just established the most important property of isosceles trianges.

Book I of the Elements is capped by proving the Pythagorean Theorem.

Which is about a special property of right triangles.

The next Proof by Contradiction arises immediately.

Suppose you construct an isosceles, and make it a right triangle.

Euclid's Elements

We just established the most important property of isosceles trianges.

Book I of the Elements is capped by proving the Pythagorean Theorem.

Which is about a special property of right triangles.

The next Proof by Contradiction arises immediately.

Suppose you construct an isosceles, and make it a right triangle.

What kind of number is sqrt(2)? Is it measurable?

Euclid's Elements (Book X)

Proof by contradiction \#2: prove the existence of irrational numbers

Euclid's Elements (Book X)

Proof by contradiction \#2: prove the existence of irrational numbers

Euclid's Elements (Book X)

Proof by contradiction \#2: prove the existence of irrational numbers

It would suffice to show that no integers p,q satisfy $\quad \frac{p}{q}=\sqrt{2}$

Proof by contradiction \#2: prove the existence of irrational numbers

Proof by contradiction \#2: prove the existence of irrational numbers

Even number

Proof by contradiction \#2: prove the existence of irrational numbers

Even number
 $2 s$

Proof by contradiction \#2: prove the existence of irrational numbers

Even number
 $2 s$

Odd number

Proof by contradiction \#2: prove the existence of irrational numbers

Even number
 $2 s$

Odd number $\quad 2 s+1$

Proof by contradiction \#2: prove the existence of irrational numbers

Square

Even number
 $2 s$

Odd number $\quad 2 s+1$

Proof by contradiction \#2: prove the existence of irrational numbers

Square

Even number
$2 s$
$(2 s)^{2}=4 s^{2}$

Odd number $\quad 2 s+1$

Proof by contradiction \#2: prove the existence of irrational numbers

Square

Even number
$2 s$
$(2 s)^{2}=4 s^{2}$

Odd number $\quad 2 s+1 \quad(2 s+1)^{2}=4 s^{2}+4 s+1$

Proof by contradiction \#2: prove the existence of irrational numbers

Square

Form
Even number
$2 s$
$(2 s)^{2}=4 s^{2}$

Odd number $\quad 2 s+1 \quad(2 s+1)^{2}=4 s^{2}+4 s+1$

Proof by contradiction \#2: prove the existence of irrational numbers

Square

Even number
$2 s$
$(2 s)^{2}=4 s^{2}$
$2 k$

Odd number $\quad 2 s+1 \quad(2 s+1)^{2}=4 s^{2}+4 s+1$

Proof by contradiction \#2: prove the existence of irrational numbers

Square

Even number $2 s$
$(2 s)^{2}=4 s^{2}$
$2 k$

Odd number $\quad 2 s+1 \quad(2 s+1)^{2}=4 s^{2}+4 s+1 \quad 2 k+1$

Proof by contradiction \#2: prove the existence of irrational numbers

Square

$(2 s)^{2}=4 s^{2}$
$2 k$

Odd number
$2 s+1$
$(2 s+1)^{2}=4 s^{2}+4 s+$
$2 k+1$

Thus, evens square to evens, odds to odds

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\frac{p^{2}}{q^{2}}=2
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even
begin again with

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2}, ~=\frac{4 s^{2}}{q^{2}}=2
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2}, ~ \begin{aligned}
\frac{4 s^{2}}{q^{2}} & =2 \\
4 s^{2} & =2 q^{2}
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2}, ~ \begin{aligned}
\frac{4 s^{2}}{q^{2}} & =2 \\
4 s^{2} & =2 q^{2} \\
2 s^{2} & =q^{2}
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2} \quad \begin{aligned}
\frac{4 s^{2}}{q^{2}} & =2 \\
4 s^{2} & =2 q^{2} \\
2 s^{2} & =q^{2} \quad \text { so q must be even }
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2} \quad \begin{aligned}
\frac{4 s^{2}}{q^{2}} & =2 \\
4 s^{2} & =2 q^{2} \\
2 s^{2} & =q^{2} \quad \text { so q must be even } \quad q=2 r
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2} \quad \begin{aligned}
\frac{4 s^{2}}{q^{2}} & =2 \\
4 s^{2} & =2 q^{2} \\
2 s^{2} & =q^{2} \quad \text { so q must be even } \quad q=2 r
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\begin{array}{rlrl}
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q} & =\sqrt{2} \\
\frac{4 s^{2}}{q^{2}} & =2 \\
4 s^{2} & =2 q^{2} \\
2 s^{2} & =q^{2} \quad & \text { so q must be even } \quad q=2 r \\
\text { but now } \frac{p}{q}=\frac{2 s}{2 r}
\end{array}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\begin{array}{rlrl}
\text { begin again with } \quad p=2 s \quad \frac{2 s}{q} & =\sqrt{2} \\
\frac{4 s^{2}}{q^{2}} & =2 \\
4 s^{2} & =2 q^{2} \\
2 s^{2} & =q^{2} \quad & \text { so q must be even } \quad q=2 r \\
\text { but now } \frac{p}{q}=\frac{2 s}{2 r}
\end{array}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Suppose there exist integers p , q such that $\frac{p}{q}=\sqrt{2} \quad$ and further that p, q are in the most reduced form (i.e., coprime)

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=2 \\
& p^{2}=2 q^{2}
\end{aligned}
$$

evens square to evens, and odds to odds, so p must be even

$$
\begin{aligned}
& \text { begin again with } \quad p=2 s \quad \frac{2 s}{q}=\sqrt{2} \\
& \frac{4 s^{2}}{q^{2}}=2 \\
& 4 s^{2}=2 q^{2} \\
& 2 s^{2}=q^{2} \quad \text { so q must be even } \quad q=2 r \\
& \text { but now } \quad \frac{p}{q}=\frac{2 s}{2 r}
\end{aligned}
$$

Proof by contradiction \#2: prove the existence of irrational numbers

Proof by contradiction \#2: prove the existence of irrational numbers

We falsely supposed rational numbers could be square roots of 2

Proof by contradiction \#2: prove the existence of irrational numbers

We falsely supposed rational numbers could be square roots of 2

Then found this led to an absurd situation

Proof by contradiction \#2: prove the existence of irrational numbers

We falsely supposed rational numbers could be square roots of 2

Then found this led to an absurd situation

Which could not be true

Proof by contradiction \#2: prove the existence of irrational numbers

We falsely supposed rational numbers could be square roots of 2

Then found this led to an absurd situation

Which could not be true

The math is right, which means our suppositions are wrong

Proof by contradiction \#2: prove the existence of irrational numbers

We falsely supposed rational numbers could be square roots of 2

Then found this led to an absurd situation

Which could not be true

The math is right, which means our suppositions are wrong

So we reject our false supposition

Proof by contradiction \#2: prove the existence of irrational numbers

We falsely supposed rational numbers could be square roots of 2

Then found this led to an absurd situation

Which could not be true

The math is right, which means our suppositions are wrong

So we reject our false supposition

And thus prove the existence of a non-rational kind of number

The null hypothesis

The null hypothesis

This HO construct, which reads awkwardly in language

The null hypothesis

This H0 construct, which reads awkwardly in language

- is logically sound

The null hypothesis

This H0 construct, which reads awkwardly in language

- is logically sound
- is historically routine

The null hypothesis

This H0 construct, which reads awkwardly in language

- is logically sound
- is historically routine
- is a powerful tool

The null hypothesis

This H0 construct, which reads awkwardly in language

- is logically sound
- is historically routine
- is a powerful tool

So even though the H0 construct isn't how we typically think,

The null hypothesis

This HO construct, which reads awkwardly in language

- is logically sound
- is historically routine
- is a powerful tool

So even though the H0 construct isn't how we typically think, and is certainly not how we typically speak,

The null hypothesis

This HO construct, which reads awkwardly in language

- is logically sound
- is historically routine
- is a powerful tool

So even though the H0 construct isn't how we typically think, and is certainly not how we typically speak, it is a sensible way to frame statistical problems.

The null hypothesis

The null hypothesis

In real-world data, we don't get the clarity of Euclid

The null hypothesis

In real-world data, we don't get the clarity of Euclid

We CAN generate a good null hypothesis

The null hypothesis

In real-world data, we don't get the clarity of Euclid

We CAN generate a good null hypothesis

But we CANNOT say H0 is for sure false

The null hypothesis

In real-world data, we don't get the clarity of Euclid

We CAN generate a good null hypothesis

But we CANNOT say HO is for sure false

Instead, we say H0 is unlikely, and how unlikely

The null hypothesis

In real-world data, we don't get the clarity of Euclid

We CAN generate a good null hypothesis

But we CANNOT say HO is for sure false

Instead, we say H 0 is unlikely, and how unlikely

Like so:

Example 1

Height in boys and girls

Example 1

Height in boys and girls

I suspect they differ

Example 1

Height in boys and girls

I suspect they differ

HO: height does not differ by sex

Example 1

Height in boys and girls

I suspect they differ, and I make measurements

Example 1

Height in boys and girls

I suspect they differ, and I make measurements

H0: measurements grouped by sex do not differ

Example 1

Height in boys and girls

I suspect they differ, and I make measurements

H0: measurements grouped by sex do not differ (from the measurements grouped randomly)

Example 1

Height in boys and girls

I suspect they differ, and I make measurements

H0: measurements grouped by sex do not differ (from the measurements grouped randomly)

How can I test H 0 ? See if it is true?

Example 1

Height in boys and girls

Sex	Height
$\mathbf{1}$	45
$\mathbf{1}$	35
$\mathbf{1}$	64
$\mathbf{1}$	75
$\mathbf{0}$	54
$\mathbf{0}$	42
$\mathbf{0}$	67
$\mathbf{0}$	43

$$
\delta_{\text {real }}=\mu_{1}-\mu_{0}
$$

Example 1

Height in boys and girls

Sex	Height
$\mathbf{1}$	$\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0}$
$\mathbf{0}$	35
$\mathbf{0}$	64
$\mathbf{1}$	75
$\mathbf{0}$	54
$\mathbf{1}$	42
$\mathbf{1}$	67
$\mathbf{0}$	43

Example 1

Height in boys and girls

Sex	Height
$\mathbf{0}$	45
$\mathbf{0}$	$\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0}$
$\mathbf{1}$	35
$\mathbf{1}$	64
$\mathbf{1}$	75
$\mathbf{0}$	54
$\mathbf{0}$	42
$\mathbf{1}$	67

Example 1

Height in boys and girls

Sex	Height
$\mathbf{1}$	45
$\mathbf{0}$	$\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0}$
$\mathbf{0}$	35
$\mathbf{1}$	64
$\mathbf{0}$	75
$\mathbf{0}$	54
$\mathbf{1}$	42
$\mathbf{1}$	67

Example 1

Height in boys and girls

$$
\begin{aligned}
& \delta_{\text {real }}=\mu_{1}-\mu_{0} \\
& \\
& \delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
& \delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
& \delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
& \cdots \\
& \delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{aligned}
$$

Example 1

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Smallest

Example 1

Largest

$\delta_{\text {rand } 0001}$

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand } 0002}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\cdots \\
\delta_{\text {rand } 0100}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

$\delta_{\text {rand } 0001}$

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\cdots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Smallest

Example 1

Largest

$\delta_{\text {rand } 0003}$
$\delta_{\text {rand } 0001}$
$\delta_{\text {rand0002 }}$
rand0002

Smallest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

$\delta_{\text {rand0004 }}$
$\delta_{\text {rand0003 }}$
$\delta_{\text {rand } 0001}$

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\cdots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Smallest

Example 1

Largest

$\delta_{\text {rand } 0004}$
$\delta_{\text {rand0003 }}$
$\delta_{\text {rand } 0001}$
$\delta_{\text {rand } 0005}$

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\cdots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

$\delta_{\text {rand } 0002}$

Smallest

Example 1

Largest

$$
\begin{array}{ll}
\delta_{\text {rand0006 }} & \\
\delta_{\text {rand } 0004} & \\
\delta_{\text {rand0003 }} & \begin{array}{l}
\delta_{\text {rand } 0001}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0}
\end{array} \\
\delta_{\text {rand } 0003}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0001 }} & \delta_{\text {rand } 0100}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0005 }} & \\
\delta_{\text {rand0002 }} &
\end{array}
$$

Example 1

Largest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Smallest

Example 1

Largest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Smallest

Example 1

Largest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\ldots \\
\ldots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

Example 1

Largest

Are any of these deltas meaningful?

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\cdots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Smallest

Example 1

Largest

Are any of these deltas meaningful?
By design, NO!

$$
\begin{gathered}
\delta_{\text {rand0001 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0002 }}=\mu_{1}-\mu_{0} \\
\delta_{\text {rand0003 }}=\mu_{1}-\mu_{0} \\
\cdots \\
\delta_{\text {rand0100 }}=\mu_{1}-\mu_{0}
\end{gathered}
$$

Example 1

Largest

Are any of these deltas meaningful?
By design, NO!

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow
Define: H0 rejected above arrow

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow Define: H0 rejected above arrow Define: groups "differ" above arrow

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow
Define: H0 rejected above arrow
Define: groups "differ" above arrow
Suppose I take sample 0004

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow
Define: H0 rejected above arrow
Define: groups "differ" above arrow
Suppose I take sample 0004

I accept H0 that far up. And the groups do not in fact differ. Good!

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow
Define: H0 rejected above arrow
Define: groups "differ" above arrow
Suppose I take sample 0003

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow
Define: H0 rejected above arrow
Define: groups "differ" above arrow
Suppose I take sample 0003

I accept H0 that far up. And the groups do not in fact differ. Good!

Example 1

Largest

Smallest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow
Define: H0 rejected above arrow
Define: groups "differ" above arrow
Suppose I take sample 0006

Largest

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow Define: H0 rejected above arrow Define: groups "differ" above arrow

Suppose I take sample 0006
I reject H0 that far up. But by construction HO is true! I say the groups differ but they do not! This is a false positive.

Example 1

Are any of these deltas meaningful?
By design, NO!
At what threshold are 95\% of random deltas left out? Or, what threshold do only 5\% of random deltas attain?

Define: H0 accepted below arrow Define: H0 rejected above arrow Define: groups "differ" above arrow

Suppose I take sample 0006
I reject H0 that far up. But by construction HO is true! I say the groups differ but they do not! This is a false positive.

Example 1

Are any of these deltas meaningful?
By design, NO!

Example 1

Are any of these deltas meaningful?
By design, NO!

What have we done here?

Example 1

Example 1

Example 1

Example 1

Are any of these deltas meaningful?
By design, NO!

What have we done here?
We made HO true!
We did that by permuting labels
Got actual "HO true" values

And set a threshold to exclude most

Example 1

Are any of these deltas meaningful?
By design, NO!

What have we done here?
We made HO true!
We did that by permuting labels
Got actual "HO true" values

And set a threshold to exclude most

So that we can usually reject true H0

Example 1

Are any of these deltas meaningful?
By design, NO!

What have we done here?
We made HO true!
We did that by permuting labels
Got actual "HO true" values
And set a threshold to exclude most

So that we can usually reject true H 0
Customarily at a 95\% success rate

Example 1

Largest

Example 1

Largest

Now, where is the real delta?

Example 1

Largest

Smallest

Now, where is the real delta?

Example 1

Largest

Now, where is the real delta?

Example 1

Example 1

Largest

Now, where is the real delta?

Example 1

Largest

Now, where is the real delta?

Example 1

Largest

Now, where is the real delta?

Example 1

Largest

Now, where is the real delta?

Example 1

Some considerations

Some considerations

Whatever the analytic machinery, it is identical for real and random

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups
$2^{\wedge} n$ total groups, but each with 2 versions (e.g., 0001, 1110)

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups
$2^{\wedge} n$ total groups, but each with 2 versions (e.g., 0001, 1110)
$2^{\wedge} 8=256$

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups
$2^{\wedge} n$ total groups, but each with 2 versions (e.g., 0001, 1110)
$2^{\wedge} 8=256$
$2^{\wedge} 10=1024$

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups
$2^{\wedge} \mathrm{n}$ total groups, but each with 2 versions (e.g., 0001, 1110)

$$
2^{\wedge} 8=256 \quad 2^{\wedge} 10=1024 \quad 2^{\wedge} 20=1 \mathrm{M}
$$

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups
$2^{\wedge} \mathrm{n}$ total groups, but each with 2 versions (e.g., 0001, 1110)

$$
2^{\wedge} 8=256 \quad 2^{\wedge} 10=1024 \quad 2^{\wedge} 20=1 \mathrm{M}
$$

10K: 40x oversample

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups
$2^{\wedge} n$ total groups, but each with 2 versions (e.g., 0001, 1110)
$2^{\wedge} 8=256$
$2^{\wedge} 10=1024$
$2^{\wedge} 20=1 M$

10K: 40x oversample
10x

Some considerations

Whatever the analytic machinery, it is identical for real and random

You need a credible number of permutations, 10K is customary

For binary labels, $2^{\wedge}(n-1)$ are possible permutation groups
$2^{\wedge} n$ total groups, but each with 2 versions (e.g., 0001, 1110)

$$
2^{\wedge} 8=256
$$

10K: 40x oversample
$2^{\wedge} 10=1024$
$2^{\wedge} 20=1 M$
10x
.01x

Some considerations

Some considerations

Often, the challenge people face is what to permute.

Some considerations

Often, the challenge people face is what to permute.

Recipe:

Some considerations

Often, the challenge people face is what to permute.

Recipe:

1) Identify the relationship that matters.

Some considerations

Often, the challenge people face is what to permute.

Recipe:

1) Identify the relationship that matters.
2) Destroy ONLY that relationship, by permutation.

Example 2

You have subjects with measures in 2 conditions. Do they differ?

	Cond A	Cond B
	34	35
	57	57
	36	45
	97	87
	46	4
	33	23
	75	43
	45	34

$$
\delta_{\text {real }}=\mu_{A-B}
$$

Example 2

You have subjects with measures in 2 conditions. Do they differ?

Where A?	Cond A	Cond B
L	34	35
L	57	57
L	36	45
L	97	87
L	46	4
L	33	23
L	75	43
L	45	34

$$
\delta_{\text {real }}=\mu_{A-B}
$$

Example 2

You have subjects with measures in 2 conditions. Do they differ?

Where A?	Cond A	Cond B
L	34	35
R	57	57
L	36	45
R	97	87
R	46	4
L	33	23
R	75	43
L	45	34

$$
\delta_{\text {rand001 }}=\mu_{A-B}
$$

Example 2

You have subjects with measures in 2 conditions. Do they differ?

Where A?	Cond A	Cond B
\mathbf{R}	34	35
L	57	57
\mathbf{R}	36	45
\mathbf{R}	97	87
R	46	4
L	33	23
L	75	43
\mathbf{R}	45	34

$$
\delta_{\text {rand002 }}=\mu_{A-B}
$$

Example 3

Example 3

You have two BOLD timeseries and would like to compare them

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)
Why not get an empirical p by permuting the timepoints?

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)
Why not get an empirical p by permuting the timepoints?
But BOLD data autocorrelated, scrambling destroys that too

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)
Why not get an empirical p by permuting the timepoints?
But BOLD data autocorrelated, scrambling destroys that too
Downsample to every ~ 5 seconds?

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)
Why not get an empirical p by permuting the timepoints?
But BOLD data autocorrelated, scrambling destroys that too
Downsample to every ~ 5 seconds?

Negate autocorrelation, but lose samples samples and power

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)

Why not get an empirical p by permuting the timepoints?
But BOLD data autocorrelated, scrambling destroys that too
Downsample to every ~ 5 seconds?
Negate autocorrelation, but lose samples samples and power
E.g., 125 samples become 60 in a 5 min scan. Ouch!

Example 3

Autocorrelated timeseries

Permute timepoints

Example 3

Autocorrelated timeseries

Example 3

Autocorrelated timeseries

Downsample

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)

Why not get an empirical p by permuting the timepoints cyclically?

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)
Why not get an empirical p by permuting the timepoints cyclically?
Decent idea, but watch for periodic phenomena

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)
Why not get an empirical p by permuting the timepoints cyclically?
Decent idea, but watch for periodic phenomena
What if I compared timeseries to another scan or person?

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples $->$ higher confidence)
Why not get an empirical p by permuting the timepoints cyclically?
Decent idea, but watch for periodic phenomena
What if I compared timeseries to another scan or person?

Spatial registration, brain folding, global signals, etc etc etc

Example 3

Autocorrelated timeseries

Cyclic shift randomly

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)

What if...

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)

What if... I took the second timeseries
used Fourier transform
permuted phase but kept power
reconstructed signals
and used that as a null model?

Example 3

You have two BOLD timeseries and would like to compare them
Pearson r

Has a parametric p value (more samples -> higher confidence)
What if... I took the second timeseries
used Fourier transform
permuted phase but kept power
reconstructed signals
and used that as a null model?
Not shabby

Example 3

Autocorrelated timeseries

FFT -> permuted phase -> IFFT

In sum

In sum

Generating hypotheses only to discard them is a tradition

In sum

Generating hypotheses only to discard them is a tradition

When the tradition is recognized, it helps us see how H0 works

In sum

Generating hypotheses only to discard them is a tradition

When the tradition is recognized, it helps us see how H0 works

The virtue of permutation testing is we can make H 0 true!

Generating hypotheses only to discard them is a tradition

When the tradition is recognized, it helps us see how H 0 works

The virtue of permutation testing is we can make H 0 true!

And choose what we mean by HO is likely/certainly false

Generating hypotheses only to discard them is a tradition

When the tradition is recognized, it helps us see how H0 works

The virtue of permutation testing is we can make H 0 true!

And choose what we mean by HO is likely/certainly false

The hard part is choosing the framework for permutation

