Ridding fMRI data of motion-related influences: removal of signals with distinct spatial and physical bases in multi-echo data
Jonathan Power, Mark Plitt, Stephen Gotts, Prantik Kundu, Valerie Voon, Peter Bandettini, Alex Martin
PNAS 2018 Feb 27; 115(9):E2105-2114
PubMed link
Figures (.ppt)
GODEC and ME-ICA code (Kundu Bitbucket)
Robust PCA code (.zip) and link to more implementations and an excellent tutorial
Below are movies associated with the article "Ridding fMRI data of motion-related influences: removal of signals with distinct spatial and physical bases in multi-echo data". All movies are 1080p and will look best at full-screen resolutions. The movies stream, or click on links next to the captions to download the movies. Files to download are hosted on Dropbox Pro; if the links don't work our traffic has exceeded its 200GB/day limit and the links will be re-enabled the following day.
Video 1 (.mov - 150MB):
This video shows ME-ICA and FIT procedures separating S0 from R2* effects in the ME cohort, for the 87 subjects who successfully completed both procedures. A second frame per subject shows the mean signal in the cortical ribbon for the undenoised and denoised data after z-scoring all traces (post-denoising magnitudes are substantially smaller, as expected, hence the z-scoring). Then several frames show the time series of all ME-ICA components and how they correlate with each other and the mean cortical signal.
Video 2 (.mov - 10MB):
This video shows the link between respiration and BOLD signals in NA data. At top, motion traces, at middle, heart rate and respiration traces, and at bottom, in two frames, the FIT R2* and ME-ICA denoised BOLD signals. Heart rate and respiration are obtained from independent traces. The cyclic modulation of heart rate by respiratory cycle is due to chest in intrathoracic pressure, as is the transient elevation and then decrease of heart rate upon very deep breaths.
Video 3 (.mov - 55MB):
This video shows that global signals aren't removed much by common nuisance regressions. The left column of grayscale panels shows ME-ICA denoised data at top, then at middle the same data after regressing 12 motion parameters and mean white matter and ventricle signals, and then at bottom the same regression but also including the mean cortical signal. The right columns show the same procedures, just starting from raw data at TE2. Note that the nuisance regressions use signals from the deepest white matter and ventricle compartments, so that gray matter signal isn't inadvertently removed by partial volume effects (superficial voxels in the nuisance compartments, adjacent to gray matter, have signals almost identical to gray matter signals).
Video 4 (.mov - 40MB):
This video shows 2 methods to remove respiratory signals from fMRI time series. At left, the separation of ME-ICA denoised data into low-rank and sparse signals by GODEC. At right, the variance removed and retained by regression of mean gray matter signals in the same data.
Video 5 (.movs ~1GB per link): ME01-15 ME16-30 ME31-45 ME46-60 ME61-75 ME76-89
This video shows Workbench surface renderings of signals in "optimally combined", ME-ICA discarded, and ME-ICA retained images, as well as the variance discarded and retained after GODEC and mean cortical signal regression. Scaling of the heatmaps is held constant across images. At top position and motion estimates are shown, as well as the signals at the 264 ROIs used to generate correlation matrices of the paper. Automated image generation from Workbench crashes not infrequently, and only 73 subjects' data are shown as a result of sporadic crashes (each movie requires 239 volumes x 2 surfaces x 7 images = 3346 correct calls to image generation). One video streams and the rest may be downloaded.
Video 6 (.mov - 45MB)
This video shows gray plots of ME subjects undergoing 4 techniques to remove global signals from fMRI data: robust PCA (RPCA), Go Decomposition (GODEC), global signal regression (GSR), and CompCor. At top are the ME-ICA denoised data, and then the two plots below show the global variance and the sparse variance identified by each method. RPCA failed on some subjects, hence the missing images.